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Some important biomolecules �for instance, bacterial FtsZ and eukaryotic DNA� are known to posses
spontaneous �intrinsic� curvature. Using a simple extension of the wormlike chain model, we study the re-
sponse of a weakly bending filament in two dimensions to a pulling force applied at its ends �a configuration
common in classical in-vitro experiments and relevant to several in-vivo cell cases�. The spontaneous curvature
of such a chain or filament can in general be arc-length dependent and we study a case of sinusoidal variation,
from which an arbitrary case can be reconstructed via Fourier transformation. We obtain analytic results for the
force-extension relationship and the width of transverse fluctuations. We show that spontaneous-curvature
undulations can affect the force-extension behavior even in relatively flexible filaments with a persistence
length smaller than the contour length.
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I. INTRODUCTION

Semiflexible polymers are fluctuating macromolecules
with a bending stiffness intermediate between that of a ran-
dom coil �Gaussian chain� and a rigid rod. They have been
the subject of intense experimental and theoretical study in
recent years because many important biomolecules fall in
this category. The elastic behavior of the structural elements
of the cytoskeleton �F-actin, microtubules, intermediate fila-
ments� as well as that of DNA strongly depend on their bend-
ing stiffness �1,2�.

A widely used minimal model of semiflexible polymers is
the wormlike chain model �WLC� which treats the filament
as a locally inextensible one-dimensional fluctuating curve
with bending stiffness �3,4�. This model involves only two
length scales, namely, the contour length L and the persis-
tence length Lp, which is the correlation length of the poly-
mer directedness related to the chain bending modulus �
= 1

2LpkBT�d−1�, where d is the dimensionality of the embed-
ding space. In the limit L /Lp�1 the semiflexible chain trans-
forms into a Gaussian coil and the question of excluded-
volume interaction may become relevant; in the opposite
limit L /Lp�1 the chain approaches the limit of rigid rod, in
which case the additional modulus penalizing the local
stretching/compression may come into play �5�. Despite its
simplicity, the WLC model has been successfully used to
describe some important experimental results such as the
strong stretching of ds-DNA �6�. However, the advent of
single molecule experiments has revealed many occasions
where the complexity of the microscopic architecture of the
filament appears to affect its macroscopic behavior in a way
that cannot be accounted for by the classical WLC model.

An important property of some biomolecules which goes
beyond the basic WLC model is spontaneous local curvature.
FtsZ is a protein of the prokaryotic cytoskeleton which plays
an essential role in cell division as it assembles into the con-
tractile ring �Z-ring� that divides the bacterium �7�. It can be
visualized on a mica surface using atomic-force microscopy
�AFM�. An important property of many FtsZ protofilaments
is the spontaneous curvature of their relaxed state. Their role
in force generation strongly depends on the determination of

their persistence length �8�. Assuming the relaxed state of
FtsZ protofilaments to be straight, Dajkovic et al. �9� esti-
mated Lp�200 nm which is much too small. On the other
hand, Horger et al. �10� taking into account the finite spon-
taneous curvature measured by AFM �average radius of cur-
vature �100 nm�, determined a persistence length Lp
�4 �m which is close to the value calculated from models
of the flexural rigidity.

The existence of stable bent configurations of DNA has
been known for many years and they play important roles in
many basic genetic processes �11�. Spontaneous curvature in
the local structure of DNA is sequence dependent �12�. As in
the case of FtsZ, the presence �or absence� of local sponta-
neous curvature in a DNA filament is crucial in determining
the persistence length and its relation to the bending rigidity.
In a recent experiment, AFM imaging of two-dimensional
human DNA chains and comparison to measurements on
both intrinsically straight and uncorrelated HCV DNA has
demonstrated their spontaneous curvature �13�.

The theoretical study of small �Gaussian� thermal fluctua-
tions of three-dimensional filaments with spontaneous curva-
ture and torsion has yielded analytical expressions for the
orientational correlation functions and the persistence length
�14�. An auxiliary field theory of three-dimensional polymers
with intrinsic curvature has obtained the orientational corre-
lations, mean square separation and the force-extension rela-
tion of such chains in the L /Lp�1 limit, showing that helical
configurations arise due to the excluded-volume interaction
�15�. Real filaments with spontaneous curvature in three di-
mensions also possess a finite twist rigidity which has been
shown to affect the end-to-end distribution �16� and the re-
sponse to a stretching force giving rise to instabilities
�17,18�. The zero-temperature conformations of two-
dimensional filaments with constant spontaneous curvature
under an applied force for various boundary conditions, as
well as the linear response at finite temperature to an applied
force, have been recently investigated in �19�.

In this paper, we study the response of a two-dimensional
WLC with spontaneous curvature to a stretching force ap-
plied at the ends. Although in general one of course expects
the stretched chain to explore fluctuations in both perpen-
dicular directions, the two-dimensional limit is a meaningful
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simplifying approximation that permits us to carry out a
complete analytical study, while retaining some of the rel-
evant qualitative features of the general problem. The three-
dimensional problem is more complicated in two nontrivial
aspects. Curvature in 3d is always positive definite whereas
in 2d we can define the signed curvature. In addition, the
presence of twist rigidity complicates matters even further
�16–18�. As we explain in Sec. VII, however, the main con-
clusion of this work which is the softening of the stretching
response due to a spatially varying spontaneous curvature is
expected to carry through in 3d. Besides, many imaging ex-
perimental investigations �10,13� are carried out on mol-
ecules confined to a surface. A stretching experiment on
DNA electrostatically confined to the surface of a fluid mem-
brane is presented in �20�. The elasticity of semiflexible
polymers without spontaneous curvature in two dimensions
has been studied analytically in �21�. The spontaneous cur-
vature can in general be inhomogeneous, dependent on the
location along the arc length s along the chain. Any such
variation can be decomposed into Fourier harmonics and so
we study a case of local curvature varying in an arbitrary
sinusoidal fashion along the chain length. We assume that the
filament is weakly bending. This approximation can be real-
ized in the case of filaments with small spontaneous curva-
ture and small thermal fluctuations or in the case of strong
stretching forces which have flattened out the initially large
spontaneous curvature and/or the large thermal undulations.
This is the simplest possible extension of the WLC model to
include spontaneous curvature analytically. A formally simi-
lar approach has recently been employed in �22� to study
uncorrelated quenched disorder in the spontaneous curvature
of stretched two-dimensional filaments.

The paper is organized as follows. In Sec. II we introduce
our model and derive the Gaussian energy functional which
characterizes the stretched polymer. In the absence of ther-
mal fluctuations, the polymer assumes the ground-state con-
formation which minimizes the elastic energy for given
boundary conditions; finding this conformation is the subject
of Sec. III. In Sec. IV we show that thermal fluctuations
decouple from the athermal mechanical response and are in-
dependent of the spontaneous curvature. In Sec. V we calcu-
late the force-extension relationship and identify the various
force scales in the problem, while in Sec. VI we investigate
the response of the shape of transverse fluctuations on the
stretching force. We conclude and discuss a possible exten-
sion of this work in Sec. VII.

II. MODEL

We treat a semiflexible polymer with spontaneous �intrin-
sic� curvature by simply extending the classical WLC model.
The filament is described as a plane curve, r�s�, where s
� �0,L� is the arc length along its contour, subject to a local
inextensibility constraint so that the total contour length L is
constant. The constraint is mathematically expressed by the
condition,

� �r�s�
�s

� = 1. �1�

The effective free-energy functional �“Hamiltonian”� of the
polymer depends only on its curvature �bending�,

H0�r�s�� =
�

2
�

0

L

ds�� �t�s�
�s

� − c�s�	2

, �2�

where t�s�=�r�s� /�s is the tangent vector and c�s� is the
spontaneous curvature at the position s, cf. Fig. 1. This bend-
ing energy penalizes conformations with a local curvature if
it deviates away from c�s�.

The interaction with a stretching force f which pulls at the
polymer end points is expressed by adding to H0 the work
function

W�r�s�� = − f · �r�L� − r�0�� = − �
0

L

dsf · t�s� . �3�

The stretching response of a filament described by Eqs.
�2� and �3� is in general analytically intractable for two rea-
sons. One is the well-known problem associated with the
local inextensibility constraint, the other is the nonanalyticity
introduced by the definition of curvature as the modulus of
dt�s� /ds. However, in the present case of weakly bending
filaments in two dimensions the problem simplifies drasti-
cally and becomes linear. The coordinate system that we use
is shown in Fig. 1. To describe a weakly bending filament, it
is convenient to use the parametrization r�s�
= �s−X�s� , y�s�� which implies t�s�= �1−�sX , t��s��. The
inextensibility condition can be written as t�

2 + �1−�sX�2=1
which, in the weakly bending approximation 
t��s�
�1,
yields �sX= 1

2 t�
2 +O�t�

4 � and therefore �s
2X= t��st�+ 1

2 t�
3 �st�

+O�t�
5 �. In this approximation, the principal normal to the

filament can be considered perpendicular to its backbone
�x direction� and �t /�s��0,�st��. Introducing the signed
curvature, c̃�s�, we can express the energy of a weakly bend-
ing stretched filament as

H�y�s�� =
�

2
�

0

L

ds�� �2y�s�
�s2 � − c̃�s�	2

+
1

2
f�

0

L

ds� �y�s�
�s

�2

− fL . �4�

c̃�s� is positive if the filament bends convexly and negative if
it bends concavely.

III. GROUND STATE

In the absence of thermal fluctuations, the response of the
filament to the stretching force is determined by minimizing

x

y

ff s

t(s)

−

FIG. 1. Schematic diagram of a filament with spatially varying
spontaneous curvature showing the notation used.
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the functional H�y�s�� for appropriate boundary conditions.
In this paper, we assume hinged-hinged boundary conditions
which can be realized by attaching beads at the end-points
that can exert forces but not moments �26�. As we show
below, in the case of strong stretching, the specific boundary
conditions may become irrelevant. Formally, they are
expressed by the following relations:

y�0� = y�L� = 0,

y��0� = c̃�0�, y��L� = c̃�L� . �5�

�The primes denote derivatives with respect to s.� The mini-
mizing configuration, ya�s�, obeys an Euler-Lagrange equa-
tion which can be obtained by adding an infinitesimal varia-
tion, y�s�=ya�s�+���s�, where � is infinitesimal and ��s� is
an arbitrary function of s satisfying ��0�=��L�=0 and
���0�=���L�=0 and requiring the derivative of H��� as a
function of � to vanish. The athermal configuration is the
solution to the equation

− fya��s� + �ya
��s� − �c̃��s� = 0 �6�

with the boundary conditions given by Eq. �5�.
We first consider the case of constant curvature: the value

c̃�s�=c0 is maintained along the chain. The last term in Eq.
�6� vanishes and the athermal configuration ya�s� is deter-
mined by hyperbolic functions with the characteristic length
scale lf �� / f . Implementing the boundary conditions, we
obtain

ya�s� =
c0�

f sinh�L

lf
��sinh� s

lf
� + sinh� �− s + L�

lf
� − sinh�L

lf
�	 .

�7�

As expected, in the vanishing-force limit f →0 the above
expression yields a parabola, ya�s�= 1

2c0s�s−L�, which is
identical, to leading order in the weakly bending approxima-
tion, to a circular arc of curvature c0. For lf �L, and lf �s
�L− lf, we get a uniform displacement, ya�s�=−c0� / f ,
which implies that the actual response comes from the seg-
ments of arc-length lf at the boundaries.

For a filament with arbitrary variable spontaneous curva-
ture, one can expand it in Fourier modes:

c̃�s� = �
n

cn cos�qs + �n�, q 
n�

L
, n � N . �8�

Since Eq. �6� is linear, its solution for the general case will
be the superposition of the modes which correspond to the
individual harmonics. Taking a particular mode, c̃�s�
=cn cos�qs+��, the ground-state stretched configuration
becomes

ya�s� =
�cn

�f + q2��sinh�L

lf
�

	�2 cos���sinh�1

2

L

lf
�cosh�1

2

�L − 2s�
lf

�
− cos�qs + ��sinh�L

lf
�	 . �9�

Since Eq. �6� is linear, a chain with spontaneous curvature
containing many harmonic modes yields a response �ya�s��
which is the superposition of the responses for the individual
modes. The above expression becomes more transparent in
the case where c̃�s�=c0 sin�qs�,

ya�s� = −
c0� sin�qs�

f + q2�
. �10�

In the strong stretching regime, lf �L, any mode yields a
uniform response for lf �s�L− lf,

ya�s� = −
cn� cos�qs + �n�

f + q2�
, �11�

consisting of a simple reduction in the amplitude. We see that
the length scale lf defines the distance along the chain over
which the boundary effects persist �boundary layer�.

IV. RESPONSE AT FINITE TEMPERATURE

Thermal fluctuations are added to the athermal ground-
state response, y�s�=ya�s�+u�s�, and contribute according to
a Boltzmann weight associated with the energy given in Eq.
�4�. As we show below, in the linear theory of the weakly
bending approximation, the two Gaussian contributions
�thermal and athermal� decouple. The elastic energy of ther-
mal fluctuations then takes the form,

H�u�s�� =
�

2
�

0

L

ds�u��s��2 +
f

2
�

0

L

ds�u��s��2 + ��
0

L

dsu��s�

	�ya��s� − c̃�s�� + f�
0

L

dsya��s�u��s� + const. �12�

Using the Euler-Lagrange equation �6�, and the boundary
conditions �5�, one can easily show that the second line of
the above equation vanishes. Therefore �u�s��= �u��s��
= �u��s��=0, where � . . . � denotes average with the weight
exp�−
H�u�s���, 
1 /kBT.

We calculate �u2�s�� and ��u��s��2� by decomposing u�s�
into Fourier harmonics which respect the prescribed bound-
ary conditions: u�s�=�nan sin�n�s /L�, n�N. This gives

��u��s��2� =
2kBT

L
�
n=1

� cos2�n�

L
s�

���n�

L
�2

+ f	 �13�

and
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��u�s��2� = 2kBTL�
n=1

� sin2�n�

L
s�

���n�

L
�2

+ f	�n��2

. �14�

Note that the spontaneous curvature c̃ does not affect these
thermal fluctuations. The decoupling of thermal and athermal
curvature undulations and the results that we have obtained
so far allow us to calculate various experimentally relevant
observables such as force-extension curves and the average
width of transverse fluctuations.

V. FORCE-EXTENSION RELATIONSHIP

The average projected length of the filament in the direc-
tion of the stretching force is given by

�x�L�� = L −
1

2
�

0

L

ds�t�
2 �s��

= L −
1

2
�

0

L

ds�ya��s��2 −
1

2
�

0

L

ds��u��s��2� , �15�

where we have used the weakly bending approximation.
There are four different force scales in the general problem,

fcr 
�

Lp
2 , fc 

�

c0
−2 ,

fq 
�

q−2 , fL 
�

L2 , �16�

associated with the corresponding length scales: the persis-
tence length Lp=2� /kBT, the radius of spontaneous curvature
1 /c0, the wavelength of modulation of the spontaneous cur-
vature 2� /q, and the contour length L. The force scale fL is
related to finite-size effects in the sense that for f � fL, or
equivalently for lf �L, the filament can be viewed as an ef-
fective freely jointed chain consisting of “pieces” each of
contour length lf �23,24�. In principle, the length scales 1 /c0
and 1 /q are independent �the former is the amplitude of the
spontaneous curvature whereas the latter is the wavelength�.
However, the case where c0�q corresponds to very steep
undulations and goes beyond the weakly bending approxima-
tion in the absence of a strong stretching force. The steepest
undulations compatible with this approximation have c0�q.
On the other hand, we can be within the weakly bending
approximation with c0�q if the stretching force is strong
enough.

Let us first consider the case of constant spontaneous cur-
vature c̃=c0. In the limit where f � fL, the force-extension
relationship �15� acquires the simple form,

�x�L��
L

= 1 −
1

4
� L

c0
−1�� fc

f
�3/2

−
1

2
� fcr

f
�1/2

. �17�

The first term in the right-hand side �rhs� of Eq. �17� is
associated with athermal stretching whereas the second term
is associated with the stretching of thermal fluctuations. The

crossover force scale 1
2 �L /c0

−1��fc
3/2 / fcr

1/2���LpLc0
4 deter-

mines the relative weight of the two contributions. In the
strong stretching regime, the second term �which does not
depend on the spontaneous curvature� becomes dominant in
agreement with a similar result obtained recently in Ref.
�19�. If Lp�L and the spontaneous curvature of the un-
stretched filament is small, c0

−1L, the athermal contribution
is almost negligible. It becomes significant, however, when
the spontaneous curvature is large �the weakly bending ap-
proximation still applies to the stretched configuration of the
filament�. This is illustrated in Fig. 2.

We now consider the case of a filament with spontaneous
curvature which varies along its contour. If the local sponta-
neous curvature vanishes at the end points, we can expand it
in a sine series. In this case, the force-extension relationship
takes the form:

�x�L��
L

= 1 −
1

2

�2�2

L2 �
n=1

�
cn

2n2

���n�

L
�2

+ f	2

−
1

2

kBT

L
�
n=1

�
1

���n�

L
�2

+ f	 . �18�

We see that as the stretching force increases, it successively
irons out the larger length-scale �softer� modes of curvature
�spontaneous or thermally excited� �25�. If the spontaneous
curvature has only one mode and f � fL, we obtain

�x�L��
L

= 1 −
1

2

fqfc

�fq + f�2 −
1

2
� fcr

f
�1/2

. �19�

This result holds irrespective of the value of the local spon-
taneous curvature at the end-points. As expected, when the
spontaneous-curvature undulations have been ironed out by a
strong force, the force-extension relationship is determined
by the residual thermal fluctuations. The same is true when
the persistence length is so small that thermal fluctuations

FIG. 2. �Color online� Force-extension curve �solid line� for a
filament with Lp /L=1 and c0L=12. For comparison, we show the
force-extension curve of the corresponding filament without spon-
taneous curvature �dashed line�.
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wash out the spontaneous curvature. However, when Lp
�c0

−1�q−1, the spontaneous curvature strongly affects the
response to a stretching force. We point out that for fL� fcr
� f � fc� fq the response will be quite soft despite the non-
linear stretching of thermal undulations due to fcr� f as il-
lustrated in Fig. 3. If the spatially variable spontaneous cur-
vature contains many harmonic modes, our analysis still
applies: Eqs. �9� and �15� yield a result similar to that of Eq.
�18� but with the first sum in the rhs replaced by a more
complicated term. For fL f , the value of the local sponta-
neous curvature at the end points only slightly affects the
response as shown in Fig. 4.

We can gain insight into the effect of the spatially modu-
lated spontaneous curvature on the strong stretching response
by considering the effective freely jointed chain mentioned
above. A two-dimensional freely jointed chain consisting of
N “pieces” of end-to-end distance b, has a force extension
relationship,

�x�L��
Nb

= 1 −
kBT

2fb
, �20�

where f �kBT /b �23�. This equation can also be written as

�x�L��
L

=
b

2lf
−

1

2
� fcr

f
�1/2

, �21�

where the chain is viewed as a succession of N “pieces” of
arc-length 2lf. In the case of a WLC without spontaneous
curvature, b2lf �23�. In the case of a filament with spa-
tially modulated spontaneous curvature, however, the
“pieces” will be wavy with b�2lf. Plugging the result of Eq.
�11� into the athermal part of Eq. �15�, and assuming q−1

�2lf, we obtain b�x�2lf���2lf�1− fqfc /2�fq+ f�2�, thus re-
covering Eq. �19�.

We note that in the case of spatially varying spontaneous
curvature, the force-extension response for f � fL comes
mainly from ironing out undulations in the bulk. Therefore
we do not expect clamped boundary conditions of small
compliance �e.g., with the direction of the clamped segments
close to that of the pulling force�, to significantly affect the
response. On the other hand, as shown in Eq. �7�, for a fila-
ment with constant spontaneous curvature and large persis-
tence length in the strong stretching regime �f � fL�, the re-
sponse comes mainly from the boundary layers and the
results will depend on the specific boundary conditions.

VI. TRANSVERSE FLUCTUATIONS

Apart from the force-extension curve, the shape of trans-
verse fluctuations can be a useful diagnostic tool for the elas-
ticity of a semiflexible filament �26�. For a fluctuating fila-
ment with spontaneous curvature c̃�s�=c0 sin�qs� �q
=n� /L�, the average width of transverse fluctuations along
the polymer contour is given by

1

L
�

0

L

ds��y�s��2� =
�fc

�f + fq�2

+ LkBT
� f̃�3/2 − 3 coth�� f̃� f̃ + 3� f̃

6fL� f̃�5/2
,

�22�

where the nondimensional shorthand f̃  f / fL is used. The
first �athermal� term is related to the spontaneous curvature
and the second term comes from the thermal fluctuations.
For f � fL, the latter can be approximated by 1

6LkBT / f .
The profile of transverse fluctuations has the general

form,

��y�s��2�
L

=
c0

2L2

�f/fL�2F�f/fL,q,s/L� +
L

Lp
G�f/fL,s/L� , �23�

where F involves fL or fq depending on whether the sponta-
neous curvature is constant or oscillating. In the absence of
spontaneous curvature, the profile of transverse fluctuations
is determined by the function G�f / fL ,s /L�� ��u�s��2� given
in Eq. �14� which is bell-shaped and its height decreases

FIG. 3. �Color online� Force-extension curve �solid line� for a
filament with Lp /L=0.05 and c0Lp=qLp=50. For comparison, we
show the force-extension curve of the corresponding filament with-
out spontaneous curvature �dashed line�.

FIG. 4. �Color online� Force-extension curve for a filament at
T=0 with spontaneous curvature c̃�s�= 2.6

L sin� 10�
L s� �solid line� and

c̃�s�= 2.6
L cos� 10�

L s� �dashed line�.
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rather quickly with increasing force. This also applies when
the stretching force is so strong that it has ironed out the
undulations due to the spontaneous curvature. Interestingly,
this behavior persists even for stretching forces such that
fL� fcr� f � fc� fq where, as we have shown, the force-
extension relationship is strongly affected by the
spontaneous-curvature contribution. The behavior becomes
qualitatively different in the case of rather stiff filaments
�Lp�L� for f � fq� fc and f / fq�L /Lp. The athermal term
becomes dominant and it decreases very slowly with increas-
ing force. In addition, the profile is essentially flat, charac-
terized by the constant amplitude of the sinusoidal undula-
tions. This type of behavior is expected also in the case
where fc� fq and f � fq such that fc / fq

2�L / �Lpf�. In order to
get fc� fq, we need a filament with very steep undulations of
the spontaneous curvature �c0�q�. This would take us out of
validity of the weakly bending approximation. Although we
cannot make quantitative predictions for this case, we expect
the main qualitative features of the predicted behavior to
persist.

VII. CONCLUSIONS AND OUTLOOK

In the present work, we considered a straightforward ex-
tension of the WLC model which incorporates spontaneous
curvature to study the response of a two-dimensional weakly
bending filament to a pulling force applied at its ends. The
response of a filament with intermediate flexibility �L /Lp
�1� and constant spontaneous curvature is affected appre-

ciably only for large initial curvature, where the effective
stretching modulus of the chain softens. If the spontaneous
curvature is inhomogeneous, characterized by undulations of
a characteristic wavelength, we find a range of forces where
these undulations soften the response despite the nonlinear
flattening out of thermal fluctuations. The profile of trans-
verse fluctuations is mostly dominated by the bell-shaped
thermal contribution unless the spontaneous curvature undu-
lations are very steep.

Although our quantitative results are based on the two-
dimensional weakly bending assumptions, the qualitative
features are expected to hold more generally as they are re-
lated to the length and force scales of the problem. As we
have shown in Sec. V, the softening of the stretching re-
sponse for fL� fcr� f � fc� fq can be attributed to the fact
that the “pieces” of the effective freely jointed chain have an
end-to-end distance smaller than the corresponding contour
length because of their spontaneous curvature. One might
expect a similar hierarchy of length and force scales to per-
sist in the case of a three-dimensional stretched helical fila-
ment with the pitch length and the radius playing roles analo-
gous to q−1 and c0

−1, respectively, thus yielding a similar
softening. Checking the validity of this expectation is an in-
teresting direction for future work.
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